The numerical unified transform method for initial-boundary value problems on the half-line

نویسندگان

چکیده

Abstract We implement the unified transform method of Fokas as a numerical to solve linear evolution partial differential equations on half-line. The computes solution at any $x$ and $t$ without spatial discretization or time stepping. With help contour deformations oscillatory integration techniques, method’s complexity does not increase for large $x,t$ is more accurate (absolute errors are smaller, relative bounded). Our goal make no assumptions functional form initial boundary functions beyond some decay smoothness, while maintaining high accuracy in region $(x,t)$ plane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearizable Initial-Boundary Value Problems for the sine-Gordon Equation on the Half-Line

A rigorous methodology for the analysis of initial boundary value problems on the half-line, 0 < x < ∞, t > 0, for integrable nonlinear evolution PDEs has recently appeared in the literature. As an application of this methodology the solution q(x, t) of the sine-Gordon equation can be obtained in terms of the solution of a 2× 2 matrix Riemann-Hilbert problem. This problem is formulated in the c...

متن کامل

Positive Solutions for Boundary Value Problems on a Half Line

In this paper, we consider the multiplicity of positive solutions for one-dimensional p-laplacian differential equation on the half line. By using fixed point theorem due to Avery and Peterson, we provide sufficient conditions for the existence of at least three positive solutions.

متن کامل

Upper and Lower Solution Method for Fractional Boundary Value Problems on the Half-Line

where D 0 denotes the Riemann Liouville fractional derivative of order q, 1 < q < 2, η > 0, f : [0,∞) × R → R and e : [0,∞) → R are given functions satisfying some conditions. The problem (1.1)–(1.2) happens to be at resonance in the sense that the dimension of the kernel of the linear operator Lx = D 0+x is not less than one under boundary conditions (1.2). It should be noted that in recent ye...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

‎A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems

In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ima Journal of Numerical Analysis

سال: 2021

ISSN: ['1464-3642', '0272-4979']

DOI: https://doi.org/10.1093/imanum/drab007